OFFRE DE FORMATION L.M.D.

LICENCE ACADEMIQUE

<table>
<thead>
<tr>
<th>Etablissement</th>
<th>Faculté / Institut</th>
<th>Département</th>
</tr>
</thead>
<tbody>
<tr>
<td>Université Badji-Mokhtar</td>
<td>Science</td>
<td>Chimie</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Domaine</th>
<th>Filière</th>
<th>Spécialité</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sciences de la matière</td>
<td>Chimie</td>
<td>Chimie Organique Pharmaceutique</td>
</tr>
</tbody>
</table>

Responsable de l'équipe du domaine de formation:
Pr. Louisa ZOUIOUECHE
Ubastit al-Jumhuriya al-Jazairiya al-Dimuqratiya al-Shabiya

وزارة التعليم العالي والبحث العلمي

عرض تكوين

ل. م. د

ليسانس أكاديمية

<table>
<thead>
<tr>
<th>القسم</th>
<th>الكلية/المعهد</th>
<th>المؤسسة</th>
</tr>
</thead>
<tbody>
<tr>
<td>الكيمياء</td>
<td>العلوم</td>
<td>جامعة باجي مختار</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>التخصص</th>
<th>الشعبية</th>
<th>الميدان</th>
</tr>
</thead>
<tbody>
<tr>
<td>كيمياء عضوية صيدلانية</td>
<td>الكيمياء</td>
<td>علوم المادة</td>
</tr>
</tbody>
</table>

مسؤول فرقة ميدان التكوين: لويدة زويوش
SOMMAIRE

I - Fiche d’identité de la licence

1 - Localisation de la formation

2 – Coordonnateurs

3 - Partenaires extérieurs éventuels

4 - Contexte et objectifs de la formation

 A - Organisation générale de la formation : position du projet
 B - Objectifs de la formation
 C - Domaine d’activité visé
 D - Potentialités régionales et nationales d’employabilité
 E - Passerelles vers les autres spécialités
 F - Indicateurs de suivi du projet de formation

5 - Moyens humains disponibles

 A - Capacité d’encadrement
 B - Equipe d’encadrement de la formation

 B-1 : Encadrement Interne
 B-2 : Encadrement Externe
 B-3 : Synthèse globale des ressources humaines
 B-4 : Personnel permanent de soutien

6 - Moyens matériels disponibles

 A - Laboratoires Pédagogiques et Equipements
 B - Terrains de stage et formations en entreprise
 C – Documentation disponible
 D - Espaces de travaux personnels et TIC

II - Fiches d’organisation semestrielle des enseignements

1- Semestre 1

2- Semestre 2

3- Semestre 3

4- Semestre 4

5- Semestre 5

6- Semestre 6

7- Récapitulatif global de la formation

III - Fiches d’organisation des unités d’enseignement

IV - Programme détaillé par matière

V – Accords / conventions

VI – Curriculum Vitae des coordonneurs

VII - Avis et Visas des organes administratifs et consultatifs

VIII - Visa de la Conférence Régionale
I – Fiche d’identité de la Licence
1 - Localisation de la formation :

Faculté (ou Institut) : **Sciences**
Département : **Chimie**
Section : **Chimie Organique**

2 – Coordonateurs :

- **Responsable de l'équipe du domaine de formation**

 (Professeur ou Maître de conférences Classe A) :

 Nom & prénom : **Zouiouche Louisa**
 Grade: Professeur
 📞 : 038876567 Fax : 038876567 E-mail : lzouiouche@yahoo.fr
 Joindre un CV succinct en annexe de l’offre de formation (maximum 3 pages)

- **Responsable de l'équipe de la filière de formation**

 (Maitre de conférences Classe A ou B ou Maître Assistant classe A) :

 Nom & prénom : **Ahmed Chaouch Réda**
 Grade : Maître assistant A
 📞 : 038876567 Fax : 038876567 E-mail : amedridha@yahoo.fr
 Joindre un CV succinct en annexe de l’offre de formation (maximum 3 pages)

- **Responsable de l'équipe de spécialité**

 (au moins Maître Assistant Classe A) :

 Nom & prénom : **Berredjem Malika**
 Grade : Maître de Conférence Classe A
 📞 : 038876567 Fax : 038876567 E-mail : mberredjem@yahoo.fr
 Joindre un CV succinct en annexe de l’offre de formation (maximum 3 pages)

3- **Partenaires extérieurs** :

- *autres établissements partenaires*:

 - Université de Constantine
 - Université de Guelma
4 – Contexte et objectifs de la formation

A – Organisation générale de la formation: position du projet

Si plusieurs licences sont proposées ou déjà prises en charge au niveau de l’établissement (même équipe de formation ou d’autres équipes de formation), indiquer dans le schéma suivant, la position de ce projet par rapport aux autres parcours.

Structure de la Matière (SM) S1-S4

Parcours proposés

Licence Chimie Analytique

33% Module en commun

Licence Chimie Organique Pharmaceutique

50% Module en commun

Autres parcours déjà pris en charge

Licence Chimie

Licence Chimie des matériaux
B - Objectifs de la formation (compétences visées, connaissances acquises à l'issue de la formation - maximum 20 lignes)

La licence de Chimie Organique Pharmaceutique vise à donner aux étudiants un socle de connaissances minimal de bon niveau, dans les domaines; de la chimie organique générale, la chimie Bioorganique et la chimie Pharmaceutique offrant une solide formation scientifique pratique et théorique. L'objectif principal est de préparer les étudiants à des poursuites d'études, à l'issue du L3, en master à dominante chimie organique, chimie bio organique ou chimie pharmaceutique. Les parcours proposés font appel à plusieurs domaines frontières entre divers champs disciplinaires (chimie Organique, Chimie Pharmaceutique, et biomolécules). Le but de cette formation est de maîtriser les concepts, les principes et les méthodes de la chimie organique, dont les objets d'investigation sont d'une grande importance sur le plan théorique et pratique. Cette discipline s'intéresse à la conception, à la préparation et à l'interprétation du mode d'action des médicaments, et plus spécifiquement, ceux issus de la synthèse organique. C'est une science qui tente, entre autres, d'établir des relations entre la structure chimique des drogues et leur activité biologique. Cette licence a donc pour vocation de familiariser l'étudiant avec les principes actifs des médicaments, leurs structures chimiques, leur origine, leur conception, leur évolution, leur domaine d'utilisation.

C – Profils et compétences visées (maximum 20 lignes :)

Au terme de cette formation, les étudiants doivent être capables de faire le lien entre une formule de structure et l'interaction du médicament avec le vivant. Ils doivent pouvoir tenir un discours critique sur les corrélations structure-pharmacodynamique ("drug design", pharmacophore, actions diverses possibles d'une molécule sur un récepteur donné) et les corrélations structure-pharmacocinétique (passage des barrières physiologiques, pKa, logP, stabilité chimique et photochimique).

Mettre en œuvre une démarche expérimentale c'est-à-dire suivre et adapter un protocole expérimental, utiliser le matériel de base de laboratoire en chimie, utiliser les principales techniques de synthèse, de purification et d'analyse des composés organiques.

L'étudiant aura appris à réaliser un bilan personnel, à développer une stratégie de recherche de stage, à exposer oralement ses travaux, à travailler en autonomie, à gérer son temps. Il aura été confronté au travail en groupe, à l'élaboration, l'organisation et le suivi d'un projet. Il maîtrisera les nouvelles technologies de l'information et de la communication.

Tous ces atouts majeurs auront été consignés dans son carnet de route universitaire et professionnel, un point de départ pour une réussite professionnelle.
D – Potentialités régionales et nationales d'employabilité

Cette licence forme des étudiants en chimie pharmaceutique compétents, elle que répond aux besoins actuels, considérant l'évolution technologique constante de la société. visant à la fois une solide formation théorique et pratique, l'Université n'hésite pas à imimerger de façon autonome ses futurs chimistes dans des travaux en laboratoire afin de compléter les cours de fondements théoriques. Au delà des connaissances scientifiques théoriques et pratiques acquises tout au long des trois années de licence, l'étudiant inscrit dans la mention chimie organique Pharmaceutique aura élaboré un projet personnel et professionnel, en particulier par le biais d'Unités d'Enseignement spécifiques. Dans ces UE, l'étudiant aura découvert la diversité des métiers de la Chimie fondamentale à la Chimie appliquée en passant par l'enseignement, et les principaux secteurs d'activités ainsi que les situations de l'emploi correspondantes.

E – Passerelles vers les autres spécialités

Débouchés possibles pour les étudiants :

- Masters académique de la mention Chimie Organique.
- Masters académique de Chimie Pharmaceutique
- Masters professionnels de mentions : chimie pharmaceutique,

F – Indicateurs de suivi du projet :

Les indicateurs que l'on peut envisager pour l'évaluation et le suivi du projet de formation sont :

- le flux d'étudiants qui sollicitent cette formation et son attrait
- les débouchés offerts suite à cette formation

Par ailleurs, des questionnaires pourraient être soumis aux étudiants en cours et en fin de formation.
5 – Moyens humains disponibles
 A : Capacité d’encadrement (exprimé en nombre d’étudiants qu’il est possible de prendre en charge) : 12 étudiants
 B : Equipe d’encadrement de la formation :
 B-1 : Encadrement Interne :

<table>
<thead>
<tr>
<th>Nom, prénom</th>
<th>Diplôme</th>
<th>Grade</th>
<th>Laboratoire de recherche de rattachement</th>
<th>Type d'intervention*</th>
<th>Emargement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aouf Nour-Eddine</td>
<td>Doctorat d’Etat</td>
<td>Professeur</td>
<td>Laboratoire de Chimie organique Appliquée</td>
<td>Cours/TD</td>
<td></td>
</tr>
<tr>
<td>Djeghaba Zine Eddine</td>
<td>Doctorat d’Etat</td>
<td>Professeur</td>
<td>Laboratoire de Chimie organique Appliquée</td>
<td>Cours/TD</td>
<td>Cours/TD</td>
</tr>
<tr>
<td>Zouioueche Louisa</td>
<td>Doctorat d’Etat</td>
<td>Professeur</td>
<td>Laboratoire de Chimie organique Appliquée</td>
<td>Cours/TD</td>
<td></td>
</tr>
<tr>
<td>Ferkous Foued</td>
<td>Doctorat d’Etat</td>
<td>Professeur</td>
<td>Laboratoire de Chimie organique Appliquée</td>
<td>Cours/TD</td>
<td></td>
</tr>
<tr>
<td>Djerourou Abdelhafid</td>
<td>Doctorat d’Etat</td>
<td>Professeur</td>
<td>Biocatalyse et Synthèse Organique</td>
<td>Cours/TD</td>
<td></td>
</tr>
<tr>
<td>Regainia Zine</td>
<td>Doctorat d’Etat</td>
<td>Professeur</td>
<td>Laboratoire de Chimie organique Appliquée</td>
<td>Cours/TD</td>
<td></td>
</tr>
<tr>
<td>Djebbar Houria</td>
<td>Doctorat d’Etat</td>
<td>Professeur</td>
<td>Laboratoire de Toxicologie</td>
<td>Cours/TD</td>
<td></td>
</tr>
<tr>
<td>Liacha Messaoud</td>
<td>Doctorat d’Etat</td>
<td>Professeur</td>
<td>Biocatalyse et Synthèse Organique</td>
<td>Cours/TD</td>
<td></td>
</tr>
<tr>
<td>Legseir Belgasem</td>
<td>Doctorat d’Etat</td>
<td>Professeur</td>
<td>Biocatalyse et Synthèse Organique</td>
<td>Cours/TD</td>
<td></td>
</tr>
<tr>
<td>Aichaoui Hocine</td>
<td>Doctorat d’Etat</td>
<td>Professeur</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Berrezag Kamel</td>
<td>Doctorat d’Etat</td>
<td>Maître de conférences</td>
<td>Laboratoire de Chimie organique Appliquée</td>
<td>Cours/TD</td>
<td></td>
</tr>
<tr>
<td>Bouzemi Nassima</td>
<td>Doctorat d’Etat</td>
<td>Maître de conférences</td>
<td>Laboratoire de Chimie organique Appliquée</td>
<td>Cours/TD</td>
<td></td>
</tr>
<tr>
<td>Bidjou Chahra</td>
<td>Doctorat d’Etat</td>
<td>Maître de conférences</td>
<td>Biocatalyse et Synthèse Organique</td>
<td>Cours/TD</td>
<td></td>
</tr>
<tr>
<td>Berredjem Malika</td>
<td>Doctorat d’Etat</td>
<td>Maître de conférences</td>
<td>Laboratoire de Chimie organique Appliquée</td>
<td>Cours/TP</td>
<td></td>
</tr>
<tr>
<td>Benamia Fatihia</td>
<td>Doctorat</td>
<td>Maître de conférences</td>
<td>Laboratoire de Chimie organique Appliquée</td>
<td>Cours/TP</td>
<td></td>
</tr>
<tr>
<td>Djilani Salah</td>
<td>Doctorat d’Etat</td>
<td>Maître de conférences</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zeror Saousen</td>
<td>Doctorat d’Etat</td>
<td>Maître de conférences</td>
<td>Laboratoire de Chimie organique Appliquée</td>
<td>Cours/TP</td>
<td></td>
</tr>
</tbody>
</table>

* = Cours, TD, TP, Encadrement de stage, Encadrement de mémoire, autre (à préciser)

B-2 : Encadrement Externe :

<table>
<thead>
<tr>
<th>Nom, prénom</th>
<th>Diplôme</th>
<th>Etablissement de rattachement</th>
<th>Type d’intervention*</th>
<th>Emargement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Djebbar Houria</td>
<td>Doctorat d’Etat</td>
<td>Professeur</td>
<td>Cours+TD</td>
<td></td>
</tr>
<tr>
<td>Ait Kakki Samira</td>
<td>Pharmacien</td>
<td>Université d’Annaba INESM</td>
<td>Cours+TD</td>
<td></td>
</tr>
<tr>
<td>Djebbar Mohamed</td>
<td>Pharmacien</td>
<td>Université d’Annaba INESM</td>
<td>Cours+TD</td>
<td></td>
</tr>
</tbody>
</table>

* = Cours, TD, TP, Encadrement de stage, Encadrement de mémoire, autre (à préciser)
B-3 : Synthèse globale des ressources humaines :

<table>
<thead>
<tr>
<th>Grade</th>
<th>Effectif Interne</th>
<th>Effectif Externe</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Professeurs</td>
<td>8</td>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>Maîtres de Conférences (A)</td>
<td>6</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Maîtres de Conférences (B)</td>
<td></td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>Maître Assistant (A)</td>
<td></td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Maître Assistant (B)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Autre (préciser)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>15</td>
<td>3</td>
<td>18</td>
</tr>
</tbody>
</table>

B-4 : Personnel permanent de soutien (indiquer les différentes catégories)

<table>
<thead>
<tr>
<th>Grade</th>
<th>Effectif</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
6 – Moyens matériels disponibles

A- Laboratoires Pédagogiques et Equipements : Fiche des équipements pédagogiques existants pour les TP de la formation envisagée (1 fiche par laboratoire)

Intitulé du laboratoire: Laboratoire de Chimie Organique Appliquée
Biocatalyse et Synthèse Organique

Capacité en étudiants: 12

<table>
<thead>
<tr>
<th>N°</th>
<th>Intitulé de l’équipement</th>
<th>Nombre</th>
<th>Observations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Chromatographie en phase gazeuse</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CGMS</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Spectrophotométrie Infra rouge</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Spectrométrie RMN</td>
<td>1</td>
<td>Constantine</td>
</tr>
<tr>
<td></td>
<td>Spectrophotométrie d’absorption atomique</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>four micro-ondes pour synthèse</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Spectrophotométrie UV-Visible</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Polarimétrie</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

B- Terrains de stage et formations en entreprise:

<table>
<thead>
<tr>
<th>Lieu du stage</th>
<th>Nombre d’étudiants</th>
<th>Durée du stage</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

D- Espaces de travaux personnels et TIC :
L’université d’Annaba possède un cyberespace de plus de 300 places
II – Fiche d'organisation semestrielle des enseignements
(Prière de présenter les fiches des 6 semestres)
1- Semestre 1 :

<table>
<thead>
<tr>
<th>Unité d’Enseignement</th>
<th>VHS 15 sem</th>
<th>V.H hebdomadaire</th>
<th>Coeff</th>
<th>Crédits</th>
<th>Mode d'évaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>C</td>
<td>TD</td>
<td>TP</td>
<td>Autres</td>
</tr>
<tr>
<td>UE fondamentales</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UEF1(O/P)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Math.1</td>
<td>67,5h</td>
<td>1,5h</td>
<td>3 h</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Phys.1</td>
<td>67,5h</td>
<td>1,5h</td>
<td>3h</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>UEF2(O/P)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chim.1</td>
<td>67,5h</td>
<td>1,5h</td>
<td>3h</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Etc.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UE méthodologie</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UEM1(O/P)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TP Physique</td>
<td>15h</td>
<td></td>
<td>1h(TP/15j)</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>TP Chimie</td>
<td>15h</td>
<td></td>
<td>1h(TP/15j)</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>UEM2(O/P)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bureautique et technologie du web</td>
<td>45h</td>
<td>1,5h</td>
<td>1.5h</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>UE découverte</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UED1(O/P)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physique</td>
<td>22,5 x 2</td>
<td>1.5h</td>
<td></td>
<td>2x2</td>
<td>4</td>
</tr>
<tr>
<td>Informatique</td>
<td>45h</td>
<td></td>
<td></td>
<td>2x2</td>
<td>4</td>
</tr>
<tr>
<td>UED2(O/P)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Environnement</td>
<td></td>
<td></td>
<td>1.5h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biologie</td>
<td></td>
<td></td>
<td>1.5h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Science de la terre</td>
<td></td>
<td></td>
<td>1.5h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Science de univers</td>
<td></td>
<td></td>
<td>1.5h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UE transversales</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UET1(O/P)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Français</td>
<td>22,5h</td>
<td>1,5h</td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>UET2(O/P)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Semestre 1</td>
<td>345h</td>
<td>10,5</td>
<td>9</td>
<td>3.5</td>
<td>30</td>
</tr>
</tbody>
</table>
2- Semestre 2 :

<table>
<thead>
<tr>
<th>Unité d’Enseignement</th>
<th>VHS</th>
<th>V.H hebdomadaire</th>
<th>Coeff</th>
<th>Crédits</th>
<th>Mode d’évaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>15sem</td>
<td>C</td>
<td>TD</td>
<td>TP</td>
<td>Autres</td>
</tr>
<tr>
<td>UE fondamentales</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UEF1(O/P)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Math.2</td>
<td>67,5</td>
<td>1,5h</td>
<td>3h</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Phys.2</td>
<td>67,5</td>
<td>1,5h</td>
<td>3h</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>UEF2(O/P)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chim.2</td>
<td>67,5</td>
<td>1,5h</td>
<td>3h</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Etc.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UE méthodologie</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UEM1(O/P)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TP Physique</td>
<td>15h</td>
<td></td>
<td>1h</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>TP Chimie</td>
<td>15h</td>
<td></td>
<td>1h</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>UEM2(O/P)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Informatique</td>
<td>67,5h</td>
<td>1,5h</td>
<td>3h</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>UE découverte</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UED1(O/P)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Matière 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Matière 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UED2(O/P)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UE transversales</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UET1(O/P)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Français</td>
<td>22,5h</td>
<td>1,5h</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Histoire des sciences</td>
<td>22,5h</td>
<td>1,5h</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Etc.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Semestre 2</td>
<td>345</td>
<td>9</td>
<td>9</td>
<td>5</td>
<td>30</td>
</tr>
</tbody>
</table>
3- Semestre 3 :

<table>
<thead>
<tr>
<th>Unité d’Enseignement</th>
<th>VHS</th>
<th>V.H hebdomadaire</th>
<th>Coeff</th>
<th>Crédits</th>
<th>Mode d'évaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>15 sem</td>
<td>C</td>
<td>TD</td>
<td>TP</td>
<td>Autres</td>
</tr>
<tr>
<td>UE fondamentales</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UEF1(O/P)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maths.3</td>
<td>67,5h</td>
<td>1,5h</td>
<td>3h</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Phys.3</td>
<td>90h</td>
<td>3h</td>
<td>3h</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>UEF2(O/P)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chim.3</td>
<td>67,5h</td>
<td>1,5h</td>
<td>3h</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Etc.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UE méthodologie</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UEM1(O/P)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TP Physique</td>
<td>15h</td>
<td></td>
<td></td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>TP Chimie</td>
<td>15h</td>
<td></td>
<td></td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>UEM2(O/P)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mathématiques</td>
<td>45h</td>
<td>1,5h</td>
<td>1,5h</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>UE découverte</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UED1(O/P)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Techniques d’analyse</td>
<td>45h</td>
<td>1,5h</td>
<td>1,5h</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>UED2(O/P)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Etc.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UE transversales</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UET1(O/P)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anglais</td>
<td>22,5h</td>
<td>1,5h</td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>UET2(O/P)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Etc.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Semestre 3</td>
<td>367,5</td>
<td>10,5</td>
<td>12</td>
<td>2</td>
<td>30</td>
</tr>
</tbody>
</table>
4- Semestre 4 :

<table>
<thead>
<tr>
<th>Unité d’Enseignement</th>
<th>VHS</th>
<th>V.H hebdomadaire</th>
<th>Coeff</th>
<th>Crédits</th>
<th>Mode d'évaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>15 sem</td>
<td>C</td>
<td>TD</td>
<td>TP</td>
<td>Autres</td>
</tr>
<tr>
<td>UE fondamentales</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UEF1(O/P)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maths.4</td>
<td>67,5</td>
<td>1,5h</td>
<td>3h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phys.4</td>
<td>67,5</td>
<td>1,5h</td>
<td>3h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chim.4</td>
<td>67,5</td>
<td>1,5h</td>
<td>3h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UEF2C(O/P)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chim.5</td>
<td>45</td>
<td>1,5h</td>
<td>1,5h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chim.6</td>
<td></td>
<td>1,5h</td>
<td>1,5h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UEF2P(O/P)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phys.5</td>
<td>45</td>
<td>1,5h</td>
<td>1,5h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phys.6</td>
<td></td>
<td>1,5h</td>
<td>1,5h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UE méthodologie</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UEM1(O/P)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electronique</td>
<td>45</td>
<td>1,5h</td>
<td>1,5h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UEM2(O/P)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UE découverte</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UED1(O/P)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UED2(O/P)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Etc.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UE transversales</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UET1(O/P)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anglais</td>
<td>22,5</td>
<td>1,5h</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UET2(O/P)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Etc.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Semestre 4</td>
<td>360</td>
<td>10,5</td>
<td>13,5</td>
<td>30</td>
<td>30</td>
</tr>
</tbody>
</table>
5- Semestre 5:

<table>
<thead>
<tr>
<th>Unité d’Enseignement</th>
<th>V.H hebdomadaire</th>
<th>Coeff</th>
<th>Crédits</th>
<th>Mode d’évaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>VHS 15 sem</td>
<td>C</td>
<td>TD</td>
<td>TP</td>
</tr>
<tr>
<td>UE fondamentales</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UEF1(O/P)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO7 Réactivité chimique et mécanismes réactionnels</td>
<td>52,5h</td>
<td>2h</td>
<td>1,5h</td>
<td>4</td>
</tr>
<tr>
<td>CO8 Méthodes spectroscopiques et Chromatographiques.</td>
<td>52,5h</td>
<td>2h</td>
<td>1,5h</td>
<td>4</td>
</tr>
<tr>
<td>UEF2(O/P)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COA1 Chimie Analytique</td>
<td>52,5h</td>
<td>2h</td>
<td>1,5h</td>
<td>4</td>
</tr>
<tr>
<td>CP1 Initiation à la Chimie pharmaceutique</td>
<td>52,5h</td>
<td>2h</td>
<td>1,5h</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UE méthodologie</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UEM1(O/P)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TP Chimie organique I</td>
<td>30h</td>
<td>2h</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>CP2 Pharmacie Galénique</td>
<td>30h</td>
<td>2h</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>UEM2(O/P)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pharmaco-Toxicologie</td>
<td>22,5h</td>
<td>1,5h</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>COA 2 Cinétique et catalyse</td>
<td>22,5h</td>
<td>1,5h</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>UE découverte</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UED1(O/P)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biochimie et physiologie cellulaire</td>
<td>22,5</td>
<td>1,5h</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>UED2(O/P)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Etc.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UE transversales</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UET1(O/P)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UET 5 Anglais</td>
<td>22,5h</td>
<td>1,5h</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>UET2(O/P)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Semestre 5</td>
<td>360</td>
<td>16 h</td>
<td>6 h</td>
<td>2h</td>
</tr>
</tbody>
</table>
6- Semestre 6 :

<table>
<thead>
<tr>
<th>Unité d’Enseignement</th>
<th>VHS</th>
<th>V.H hebdomadaire</th>
<th>Coeff</th>
<th>Crédits</th>
<th>Mode d’évaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>15 sem</td>
<td>C</td>
<td>TD</td>
<td>TP</td>
<td>Autres</td>
</tr>
<tr>
<td>UE fondamentales</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UEF1(O/P)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO9. Chimie Organique II</td>
<td>52,5h</td>
<td>2h</td>
<td>1.5h</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>CP3. Chimie thérapeutique</td>
<td>52,5h</td>
<td>2h</td>
<td>1.5h</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>UEF2(O/P)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CP4. Chimie Pharmaceutique</td>
<td>52,5h</td>
<td>2h</td>
<td>1.5h</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>CO11. Chimie Bioorganique</td>
<td>52,5h</td>
<td>2h</td>
<td>1.5h</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>CO10. catalyse streoselective</td>
<td>45 h</td>
<td>1,5h</td>
<td>1,5h</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>UE méthodologie</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UEM1(O/P)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TP Synthèse Organique II</td>
<td>30 h</td>
<td>2 h</td>
<td></td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>CO12. Modélisations Moléculaires</td>
<td>30 h</td>
<td>2 h</td>
<td></td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>UEM2(O/P)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CP5 Analyse et contrôle des médicaments</td>
<td>30h</td>
<td>2 h</td>
<td></td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>UE transversales</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UET1(O/P)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UET6 Anglais</td>
<td>22,5h</td>
<td>1,5h</td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>UET2(O/P)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mémoire de fin d’étude</td>
<td>2</td>
<td>2</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Total Semestre 6</td>
<td>367,5</td>
<td>15</td>
<td>7.5</td>
<td>2</td>
<td>30</td>
</tr>
</tbody>
</table>

Etablissement :
Intitulé de la licence :
Année universitaire :
7- Récapitulatif global de la formation : (indiquer le VH global séparé en cours, TD, pour les 06 semestres d’enseignement, pour les différents types d’UE)

<table>
<thead>
<tr>
<th>VH</th>
<th>UE</th>
<th>UEF</th>
<th>UEM</th>
<th>UED</th>
<th>UET</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cours</td>
<td>40</td>
<td>15</td>
<td>6</td>
<td>10.5</td>
<td>0.5</td>
<td>71.5</td>
</tr>
<tr>
<td>TD</td>
<td>52.5</td>
<td>3</td>
<td>1.5</td>
<td>10.5</td>
<td>7</td>
<td>57</td>
</tr>
<tr>
<td>TP</td>
<td></td>
<td>14.5</td>
<td></td>
<td></td>
<td></td>
<td>14.5</td>
</tr>
<tr>
<td>Travail personnel</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Autre (préciser)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>92.5</td>
<td>32.5</td>
<td>7.5</td>
<td>10.5</td>
<td>143</td>
<td></td>
</tr>
<tr>
<td>Crédits</td>
<td>117</td>
<td>44</td>
<td>9</td>
<td>10</td>
<td>180</td>
<td></td>
</tr>
<tr>
<td>% en crédits pour chaque UE</td>
<td>65 %</td>
<td>24.44%</td>
<td>5%</td>
<td>5.55%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
III – Fiches d’organisation des unités d’enseignement

(Etablir une fiche par UE)
Libellé de l'UE : Unité d’Enseignement Fondamentale
Filière : Chimie
Spécialité : Chimie Organique Pharmaceutique
Semestre : 5

| Répartition du volume horaire de l'UE et de ses matières | Cours : **120**
| | TD : **90**
| | TP:
| Crédits et coefficients affectés à l'UE et à ses matières | **UE F crédits : 16**
| | Matière 1 : **CO7** Réactivité chimique et mécanismes réactionnels
| | Crédits : **4**
| | Coefficient : **4**
| | Matière 2 : **CO8** Méthodes spectroscopiques et Chromatographiques.
| | Crédits : **4**
| | Coefficient : **4**
| | Matière 2 : **COA1** Chimie Analytique
| | Crédits : **4**
| | Coefficient : **4**
| | Matière : **CP1** Initiation à la Chimie pharmaceutique
| | Crédits : **4**
| | Coefficient : **4**
| Mode d'évaluation (continu ou examen) | Contrôle continu + Examen
| **CO7** Réactivité chimique et mécanismes réactionnels | présenter, dans un premier temps, les différents paramètres énergétiques des réactions chimiques avant d’aborder les grands principes réactionnels en chimie organique.
| **CO8** Méthodes spectroscopiques et Chromatographiques. | Se familiariser avec les méthodes spectroscopiques afin de déterminer la formule, la structure, la conformation et la dynamique de produits organiques
| **COA1** Chimie Analytique | Cet enseignement a pour but de donner aux étudiants des bases théoriques solides concernant la spectroscopie atomique.
| **CP1** Initiation à la Chimie pharmaceutique | Familiariser les chimistes organiciens avec le langage et la démarche utilisée dans la recherche de molécules biologiquement actives.
Libellé de l'UE : Unité d’Enseignement Méthodologie

Filière : Chimie

Spécialité : Chimie Organique Pharmaceutique

Semestre : 5

| Répartition du volume horaire de l’UE et de ses matières | Cours : 75
| TD :
| TP : 30 |

| Crédits et coefficients affectés à l’UE et à ses matières | UE M crédits : 11
| Matière 1 : TP Chimie organique I
| Crédits : 3
| Coefficient : 3
| Matière 2 : CP2. Pharmacie Galénique
| Crédits : 3
| Coefficient : 3
| Matière 3 : Pharmaco-Toxicologie
| Crédits : 2
| Coefficient : 2
| Matière 4 : COA 2 Cinétique et catalyse
| Crédits : 3
| Coefficient : 3 |

| Mode d’évaluation (continu ou examen) | Contrôle continu + Examen |

TP Chimie organique I

Initiation aux techniques fondamentales utilisées en chimie organique et à la recherche de données bibliographiques.
Mise en pratique des notions théoriques abordées au cours de Chimie Organique.
Familiariser l’étudiant avec les propriétés et les principales caractéristiques structurales des molécules organiques.

CP2. Pharmacie Galénique

A l’issue de sa formation, l’étudiant doit : acquérir des éléments du vocabulaire pharmaceutique.
-comprendre ce qu’est un médicament en définissant les différentes étapes de son développement, de sa préparation à sa commercialisation et à son utilisation.
-connaître les excipients entrant dans la composition des formes pharmaceutiques, les opérations nécessaires à leur utilisation ainsi que le principe de leur contrôle.

Pharmaco-Toxicologie

Cet enseignement à pour objectif d’initier aux étudiants les toxiques médicamenteux et non médicamenteux.

COA 2 Cinétique et catalyse

Cet enseignement a pour objectif de fournir une vision d’ensemble du contrôle cinétique des réaction Organique et catalyse homogène et hétérogène.
| Répartition du volume horaire de l’UE et de ses matières | Cours : **22.5**
| TD :
| TP: |
| Crédits et coefficients affectés à l’UE et à ses matières | UE D **crédits:** 2
| Matière 1: Biochimie et physiologie cellulaire
| Crédits : 2
| Coefficient : 2 |
| Mode d’évaluation (continu ou examen) | Examen |
| Biochimie et physiologie cellulaire | Cet enseignement à pour objectif d’initier aux étudiants
Les éléments de biologie cellulaire |

| Répartition du volume horaire de l’UE et de ses matières | Cours : **22.5**
| TD :
| TP: |
| Crédits et coefficients affectés à l’UE et à ses matières | UE T **crédits:** 2
| Matière 1: UET 1 Anglais
| Coefficient : 2 |
| Mode d’évaluation (continu ou examen) | Examen |
| Biochimie et physiologie cellulaire | Cet enseignement à pour objectif d’initier aux étudiants
Les éléments de biologie cellulaire |
Libellé de l'UE: Unité d'Enseignement Fondamentale
Filière : Chimie
Spécialité : Chimie Organique Pharmaceutique
Semestre : 6

| Répartition du volume horaire de l'UE et de ses matières | Cours : 142.5
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TD : 112.5</td>
</tr>
</tbody>
</table>

Crédits et coefficients affectés à l'UE et à ses matières	UE F crédits : 20
	Matière 1: **CO9.** Chimie Organique II
	Crédits : 4
	Coefficient : 4
	Matière 2: **CP3.** Chimie thérapeutique
	Crédits : 4
	Coefficient : 4
	Matière 3: **CP4.** Chimie Pharmaceutique
	Crédits : 4
	Coefficient : 4
	Matière 4: **CO11.** Chimie Bioorganique
	Crédits : 4
	Coefficient : 4
	Matière 5: **CO10.** catalyse streoselective
	Crédits : 4
	Coefficient : 4

| Mode d'évaluation (continu ou examen) | Contrôle continu + Examen
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **CO9.** Chimie Organique II
 Donner les bases nécessaires en enzymologie aux étudiants abordant la chimie pharmaceutique.

- **CP3.** Chimie thérapeutique
 Au terme de cet apprentissage, l'apprenant doit connaître les principales familles de médicaments à savoir l'historique de leur découverte, les nomenclatures, structures générales, relations structure-activité, schémas de synthèses (des chefs de fil) et propriétés pharmacologiques.

- **CP4.** Chimie Pharmaceutique
 Appliquer les connaissances de chimie organique à certaines catégories de molécules importantes pour leurs effets biologiques et faire le lien entre les théories et la pratique portant sur l'action des médicaments.

- **CO11.** Chimie Bio organique
 cet enseignement a pour objectif particulier la connaissance des structures des molécules qui constituent le *vivant*. La synthèse et l’implication des biomolécules dans les nombreuses synthèses qui permettent l’accès à des composés d’intérêt thérapeutique mettront en valeur l’intérêt de cet enseignement.

- **CO10.** catalyse streoselective
 Cet enseignement a pour objectif de fournir une vision d'ensemble de la catalyse moléculaire qui est un pilier de la chimie verte. Il décrit et compare les processus en catalyse homogène, hétérogène et enzymatique en montrant l'importance de la catalyse au niveau industriel et ses applications en chimie fine et pour la synthèse des médicaments.
Libellé de l'UE : Unité d’Enseignement Méthodologie
Filière : Chimie
Spécialité : Chimie Organique Pharmaceutique
Semestre : 6

| Répartition du volume horaire de l'UE et de ses matières | Cours : 60
| | TD :
| | TP: 30

| Crédits et coefficients affectés à l'UE et à ses matières | UE M crédits: 7
| | Matière 1 : TP Synthèse organique II
| | Crédits : 3
| | Coefficient : 3
| | Matière 2 : CO12. Modélisations Moléculaires
| | Crédits : 3
| | Coefficient : 3
| | Matière 3 : CP5 Analyse et contrôle du médicament
| | Crédits : 2
| | Coefficient : 2

| Mode d'évaluation (continu ou examen) | Contrôle continu + Examen

| TP Synthèse organique II | Apprendre à travailler avec des produits chimiques à risques moyens et dans des conditions expérimentales sophistiquées; bien mener des synthèses à plus d'une étape.

| CO12. Modélisations Moléculaires | Permettre aux chimistes organiciens de se familiariser avec la modélisations des molécules chimiques, de manipuler des structures de les simuler et de comparer leur stabilité de les analyser à travers des indices spécifiques et des propriétés chimiques avec l’outil informatique.

| CP5 Analyse et contrôle des | L’objectif de cet enseignement est de :
| | - préciser les principaux concepts liés au contrôle qualité des médicaments
| | - développer les bases nécessaires à leur application dans l’industrie pharmaceutique.

<table>
<thead>
<tr>
<th>Répartition du volume horaire de l'UE et de ses matières</th>
<th>Cours : 22.5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TD :</td>
</tr>
<tr>
<td></td>
<td>TP:</td>
</tr>
<tr>
<td>Crédits et coefficients affectés à l'UE et à ses matières</td>
<td>UE T</td>
</tr>
<tr>
<td></td>
<td>crédits : 2</td>
</tr>
<tr>
<td></td>
<td>Matière 1: UET2 Anglais</td>
</tr>
<tr>
<td></td>
<td>Crédits : 2</td>
</tr>
<tr>
<td></td>
<td>Coefficient : 2</td>
</tr>
<tr>
<td>Mode d'évaluation (continu ou examen)</td>
<td>Examen</td>
</tr>
</tbody>
</table>
IV - Programme détaillé par matière
(1 fiche détaillée par matière)
Semestre 1

Unité fondamentale 1

Math1

Analyse et Algèbre 1 (cours/TD) (3 séances/ semaine) VHG = 67,5 heures

Phys 1

Programme de mécanique (cours/TD) (3 séances/ semaine) VHG = 67,5 heures

Rappels mathématiques (2 semaines)
Les équations aux dimensions - calculs d’erreurs - Les vecteurs

Cinématique du point (3 semaines)

Dynamique du point (4 semaines)
Le principe d’inertie et les référentiels galiléens - Le principe de conservation de la quantité de mouvement - Définition Newtonienne de la force (3 lois de Newton) - Quelque lois de forces

Travail et énergie dans le cas d’un point matériel (4 semaine)
Energie cinétique- Energie potentielle de gravitation et élastique - Champ de forces - Forces non conservatives.

Chim 1

Structure de la matière (cours/TD) (3 séances/ semaine) VHG = 67,5 heures

Structure de l’atome
Le noyau - Atome, élément, masse atomique - Radioactivité, les réactions nucléaires

Quantification de l’énergie

polyélectronique (Effet d’écran)

Classification périodique des éléments

Périodicité (période et groupe) - Propriétés chimiques(rayon atomique, énergie d’ionisation, affinité électronique, électronégativité)

La liaison chimique

Modèle classique - Liaison covalente - Orbitales moléculaires - Liaison σ et liaison π - Diagramme énergétique des molécules, ordre de liaison - Liaison ionique - Caractère ionique partiel – Hybridations - Géométrie des molécules, méthode de Gillespie.
Unité Méthodologie 1

TP physique 1 (5 manipulations)

TP Mécanique (3h / semaine)
1- Calculs d’erreurs
2- Vérification de la 2ème loi de Newton
3- Etude de pendule physique
4- Chute libre
5- Pendule simple
6- Pendule de Maxwell
7- Etude de la rotation d’un solide
8- Vérification de la fondamentale d’un mouvement circulaire – conservation de l’énergie mécanique

TP chimie 1 (5 manipulations)
1- Sécurité et initiation à la manipulation en chimie
2- Dosages acide-base
3- Recherche d’une masse molaire
4- Préparation d’une solution
5- Dosage d’oxydo-réduction

Bureautique et technologie du Web (cours/ TP) (2 séances/ semaine) VHG = 45 heures

Familiarisation avec les services d’Internet : Internet Explorer (navigation sur Internet), moteurs de recherche (Google, Altavista,…), messagerie électronique.

Unité Culture générale 1

Langue Français (1 cours/semaine)

Unité Découverte 1 (2 modules en option) ¹

(1 séance/ semaine) VHG = 22,5 heures par option

La physique et ses applications
1- histoire de la physique.
2- matière et anti-matière.
3- la gravimétrie
4- la mécanique ondulatoire.

¹ Ces programmes ont été élaborés initialement pour un volume horaire de 67,5 heures, ils doivent être aménagés pour un volume horaire de 22,5 heures (initiation).
5- les mesures physiques
6- les ondes électromagnétiques.
7- radioactivité, énergie nucléaire.
8- La mesure du temps.
9- Histoire de l’astronomie.
10- Le quanta et la vie.

Environnement
En cours d’élaboration (département physique)

Biologie générale **Cours : 45 h** **TD/TP : 15 h**
CYTOLOGIE VHG : 20 h (15 h Cours / 5h TD-TP)
1. Introduction: Organisation générale de la cellule (animale et végétale) Eucaryote et procaryote (animale et végétale).
2. Membrane plasmique
3. Matrice extracellulaire
4. Paroi
5. Cytoplasme
6. Hyaloplasme
7. Noyau interphasique
8. Réticulum endoplasmique
9. Appareil de Golgi
10. Ribosome

Biologie animale VHG : 20h (15h Cours / 5h TD-TP)
Introduction à la biologie animale
1. GAMETOGENESE 1.1. Spermatogénèse : Régulations hormonales
1.2. Ovogénèse: Regulations hormonales
2. FECONDATION (prévoir notions de Fecondation in-vitro)
3. EMBRYOLOGIE 3.1. lignée germinale: segreg
3.2. Différents type d'œufs
3.3. phases d'ontogénèse (segmentation, gastrulation et neurulation)
3.4. Déterminisme du sexe génétique, gonadique et phénotypique
3.5. Notion d'annexes embryonnaires
4. DIFFERENTS TYPES DE TISSUS (Généralités)

Biologie végétale VHG : 20h (15h Cours / 5h TD-TP)
Introduction à la biologie végétale
1. GAMETOGENESE 1.1. Grain de pollen
1.2. Ovule et sac embryonnaire
2. FECONDATION 2.1. Oeuf et embryon
2.2. Notion cycle de développement
3. DIFFERENTS TYPES DE TISSUS (Généralités)
4. MORPHOLOGIE DES VEGETAUX SUPERIEURS ET ADAPTATION
4.1. Racines
4.2. feuilles
4.3. tiges
4.4. fleurs
4.5. graines
4.6. Fruits

La partie 4 peut être traitée en TD

Sciences de la Terre
En cours d’élaboration (département Sc. Terre)

Sciences de l'Univers
En cours d’élaboration (département physique)

Semestre 2

Unité fondamentale 2

Math2
Analyse et Algèbre 2 (2 cours + 1TD) (3 séances/ semaine) VHG = 67,5 heures

Physique 2

Electricité et Magnétisme (2 cours + 1TD) (3 séances/ semaine) VHG = 67,5 heures

Electrostatique (5 semaines)
Charges et champ électrostatiques - Potentiel électrostatique - Flux du champ électrique – Théorème de Gauss - Dipôle électrique

Les conducteurs (2 semaines)
Définition et propriétés des conducteurs en équilibre - Pression électrostatique - Capacité d’un conducteur et d’un condensateur.

Electrocinétique
Conducteur électrique - Loi d’Ohm - Loi de Joule - Circuits électriques - Application de la loi d’Ohm aux réseaux - Lois de Kirshoff.

Electromagnétisme (3 semaines)
Définition d’un champ magnétique - Force de Lorentz - Loi de Laplace - Loi de Biot et Savart - Dipôle magnétique.

Chimie 2

Thermodynamique et cinétique chimique (cours +TD +TP) (3 séances/ semaine)
VHG = 67,5 heures

Unité Méthodologie 2

TP physique 2 (5 manipulations)
TP Electricité 3h / semaine
1- Association et mesure des résistances
2- Association et mesure des capacités
3- Charge décharge d’un condensateur
4- Vérification de la loi de Biot et Savart
5- Etude d’un transformateur
6- Détermination du champ magnétique terrestre
7- Pont de Wheatstone

TP chimie 2 (5 manipulations)
(Choisir selon les moyens en place 3 sur 4 en thermodynamique, et 2 sur 3 en cinétique)

Thermodynamique
1- Mesure de la capacité calorifique des liquides
2- Propriétés thermodynamiques de GP
3- Mesure du rapport des chaleurs massiques d’un gaz
4- Premier principe de la thermodynamique

Cinétique
5- Inversion du saccharose
6- Saponification d’un ester (ordre 2)
7- Décomposition de l’eau oxygénée.

Informatique (Cours/TD/TP) (3 séances/semaine) VHG = 67,5 heures
L'objectif de cette première unité d'introduction à la discipline informatique est de permettre aux étudiants de mieux comprendre les principes de fonctionnement d'une machine et d'un logiciel, ainsi que certains principes de base de la programmation.

- Initiation aux concepts fondamentaux de fonctionnement d’un ordinateur : présentation des composants de base d’une machine et des relations entre ces différents composants.
- Initiation à l’algorithme et à la programmation :
 - Connaître ce qu’est un algorithme, la démarche algorithmique et les énoncés nécessaires à sa représentation en pseudo code.
 - Comprendre le fonctionnement de l’exécution d’un programme
 - Appliquer les techniques et les règles de programmation en langage C (l’apprentissage du langage C) se fera progressivement en TD et TP.

Ensuite seront abordées les notions de base de la modélisation informatique de problème : analyse et modélisation d’un problème, algorithmique et programmation. L'enseignement s’appuie sur un langage impératif et typé (Pascal ou C).
- Etudes de nouvelles structures de données
- Etude de quelques techniques algorithms plus complexes : méthodes de tri et de recherche

Programme :
- Introduction à l’informatique
 - Structure d’un ordinateur
 - Représentation de l’information
 - Calcul d’expressions logiques
- Mécanismes d’exécution d’un programme :
 - Instructions
 - Phase d’élaboration d’un programme
- Conception d’algorithme
 - Processus de résolution d’un problème.
 - Entrée/ Sortie et Variables
- Structures de contrôle
 o Langage Algorithmique
 o Découpage en sous programmes
 o Structures de données
 - Tableaux
 - Chaînes de caractères
 - Fichiers
 o Manipulation de tableaux
 - Méthodes de recherche
 - Méthodes de tri
 - Notion de complexité
 o Manipulation de fichiers
 - Les structures d’enregistrements
 - Traitements de fichiers structurés

Unité Culture générale 2

Langue Français (1 cours/semaine)

Histoire des Sciences (1 cours/semaine)

L’objectif de ce module est de comprendre les civilisations et l’évolution de l’esprit humain à travers les âges pour améliorer le contenu du savoir et sa transmission vers les apprenants.

I. Apparition de la science, ses caractéristiques
 a) Naissance et développement des activités scientifiques
 b) Interaction entre science et société

II. Les sciences dans les civilisations anciennes
 a) Contenu des sciences dans la civilisation babylonienne (médecine, astronomie, mathématiques, botanique)
 b) Contenu des sciences dans l’ancienne civilisation égyptienne (médecine, astronomie, mathématiques, architecture, chimie)
 c) Quelques aspects de la civilisation indienne et chinoise.

III. Les sciences dans la civilisation grecque
 a) Ecoles philosophiques grecques
 b) Euclide et le livre des éléments
 c) Diophante et la science du nombre
 d) Ptolémée et l’astronomie
 e) Archimède et la méthode infinitésimale
 f) Apollonius et les coniques
 g) Hippocrate et les sciences médicales

IV. Les sciences dans la civilisation arabe
 a) Traduction en arabe d’ouvrages scientifiques écrits dans diverses langues
 b) L’algèbre ou la naissance d’une nouvelle discipline
 c) Les sciences expérimentales chez les arabes (mécanique, optique, chimie, botanique, agriculture, médecine…)

V. Les sciences dans la civilisation européenne
 a) Traduction en latin d’ouvrages scientifiques arabes et circulation des sciences grecques et arabes en Europe.
 b) Introduction à la période de la renaissance en Europe (Fibonacci, Léonard de Vinci, Cardan, Galilée, Copernic)
 c) Introduction à la période de la révolution scientifique en Europe (Pascal, Descartes, Leibniz, Newton).
2ème Année

Semestre 3

Unité fondamentale 3

Math3
Séries et analyse vectorielle (Cours/TD) (3 séances / semaine) VHG = 67,5 heures
Chapitre 1 : Séries Numériques
Propriétés générales ; séries à termes positifs ; critères de convergence. Séries à termes quelconques ; convergence absolue ; semi convergence ; critères de convergences. Produit de séries ; associativité et commutativité de la somme d’une série.
Chapitre 2 : Suites et séries de fonctions.
Suites de fonctions ; convergence simple ; convergence uniforme ; continuité, dérivaribilité et intégrabilité de la limite d’une suite de fonction. Séries de fonctions ; convergence simple, absolue, normale, uniforme, continuité, dérivaribilité et intégrabilité de la somme d’une série de fonctions.
Chapitre 3 : Séries entières.
Chapitre 4 : Analyse vectorielle

Physique 3
Vibrations, ondes mécaniques et optique (cours/TD) (4 séances/ semaine) VHG = 90 heures
Partie I : Vibrations
Chapitre 2: Systèmes linéaires à un degré de liberté
2.2 Les oscillations libres amorties. Forces d’amortissement. Equation des mouvements. Oscillations pseudopériodiques (décrement logarithmique, facteur de qualité)
2.3 Les oscillations libres forcées. Définition. Cas d’une excitation sinusoïdale (résonance, déphasage). Cas d’une excitation périodique quelconque.
2.5 Analogie entre systèmes oscillants mécaniques et électriques
Chapitre 3 : Systèmes linéaires à plusieurs degrés de liberté

Partie II :
Chapitre 4 : Généralités sur les ondes mécaniques
4.1 Classification des ondes
4.2 Intégrale générale de l’équation générale d’ondes planes.
4.3 Vitesse de phase
4.4 Notion de front d’onde
4.5 Réflexion et transmission des ondes
4.6 Relation entre les différentes grandeurs représentant l’onde

Chapitre 5 : Ondes longitudinales dans les fluides
5.1 Ondes planes dans un tuyau cylindrique
5.1.1 Equation d’ondes dans un gaz
5.1.2 Equation d’ondes dans un liquide
5.1.3 Impédance acoustique
5.1.4 Impédance caractéristique
5.1.5 Energie transportée par une onde
5.1.6 Coefficients de réflexion et de transmission d’ondes (conditions aux limites)
5.2 Effet Doppler

Chapitre 6 : Ondes dans les solides
6.1 Vitesse de propagation d’ondes longitudinales dans un barreau solide
6.2 Vitesse de propagation d’ondes transversales dans un barreau solide
6.3 Coefficients de réflexion et de transmission d’ondes (conditions aux limites)

Chapitre 7 : Ondes transversales dans une corde
7.1 Equation de propagation
7.2 Pulssations propres
7.3 Impédance caractéristique
7.4 Energie d’une onde progressive
7.5 Réflexion et transmission des ondes
7.6 Ondes stationnaires
7.7 Milieu résonnant.

Partie III : OPTIQUE

Chapitre 1 : Optique géométrique
1.1 Indice d’un milieu
1.2 Principes de l’optique géométrique
1.3 Lois de Snell-Descartes
1.4 Stigmatisme et aplanétisme
1.5 Grandissement et grossissement
1.6 Dioptre plan : formule de conjugaison
1.7 Prisme : déviation et dispersion
1.8 Miroirs sphériques et miroirs plans: formule de position et construction d’images
1.9 Lentilles minces : formule de position et construction d’images
1.10 Systèmes centrés : formules de conjugaison et de grandissement
1.11 Systèmes dioptriques et catadioptriques

Chapitre 2 : Optique ondulatoire
2.1 Superposition de deux ondes monochromatiques de même fréquence
2.2 Conditions d’interférence
2.3 Interférence de deux ondes cohérentes
2.4 Interférence en lumière bichromatique et en lumière blanche

Chim 3
Chimie minérale et organique (cours/TD) 3 séances/ semaine VHG = 67,5 heures
1- Chimie minérale

Les métaux : Propriétés des métaux, liaison métallique, structures. L’Aluminium (état naturel, obtention et propriétés physico-chimiques, utilisation). Le Fer (état naturel, obtention et propriétés physico-chimiques, utilisation)

Les métaux alcalins : (considérations générales du groupe I). Sodium (fabrication d’après le procédé Down, composés, procédé Solvay)

Les métaux alcalino-terreux :(considérations générales du groupe II). Magnésium (état naturel, obtention, composés, chaux vive, chaux éteinte)

II. Chimie organique

Introduction à la chimie organique
Valences et hybridations du carbone
Classification des fonctions organiques, nomenclature. Introduction aux principales réactions (addition, élimination, substitution). Introduction à la chimie structurale. Isoméries et stéréoisoméries. Isoméries planes ; géométries stériques. Isomérie optique (chiralité, prochiralité), configuration relative et absolue (série aliphatique et cyclique), racémisation et résolution de racémiques.
Stéréochimie : conformations, configurations, modes de représentation (Cram, Fisher, Newman), détermination configurations absolues.
La stéréoisomérie(relation d’énantiomérie et de diastéréoisomérie) Stéréochimie dynamique. Effets électroniques : inducteurs, mésomères, conjugaison, résonnance et aromaticité.

Unité Méthodologie 3

TP physique 3 (8 manipulations) 2h / séance

TP Optique

1. Dispersion de la lumière par un prisme.
4. Mesures des focales de lentilles minces.
5. Instruments optiques
6. Phénomènes d’interférences à deux ondes.
7. Interférences localisées.
8. Interféromètre de Michelson.
10. Diffraction de la lumière monochromatique par un réseau de diffraction.
11. Calibrage en longueur d’ondes d’un monochromateur à réseaux.
12. Spectrophotométrie.

TP Vibrations et Ondes
1- Module de torsion
2- Pendule de torsion
3- Etude des oscillations électriques
4- Circuit électrique oscillant en régime libre et forcé
5- Pendule de Pohl
6- Pendules couplés
7- Diffraction
8- Poulie à gorge selon Hoffmann

TP chimie 3 (5 manipulations) 3h/séance
1- Recristallisation
2- Extraction
3- Distillation
4- Réfractométrie
5- Synthèse de l’aspirine
6- Préparation d’un savon

Mathématiques
Analyse Numérique (Cours/TD/TP) (2 séances/semaine) VHG = 45 heures
- Notions d’erreurs
- Approximation et Interpolation polynomiale
- Dérivations et intégration numériques
- Résolution des systèmes linéaires
- Calcul des valeurs et vecteurs propres
- Résolution d’équations et systèmes non linéaires
- Résolution numérique des équations différentielles ordinaires

Langue Anglais (1 cours/semaine) VHG = 22,5 heures

Unité Découverte 3 (cours / TD / TP) (2 séances/semaine) VHG = 45 heures

Initiation aux techniques physico-chimiques d’analyse.
Généralités : 1-La structure électroniques des atomes, nombres quantiques atomiques. 2- Généralités sur la spectroscopie atomique.
Les spectres otiques : (Application à l’atome) 1.Etude du spectre optique d’un atome alcalin ; Cas du sodium. 2. La spectroscopie d’émission d’arc et d’étincelle. 3. La spectroscopie d’émission de flamme. 4. La spectroscopie par absorption atomique
Spectrométrie du proche et moyen infrarouge

Spectroscopie de Résonance magnétique nucléaire

Autres Méthodes
Spectrométrie de masse. Principe de la méthode. Applications.

Semestre 4

Unité fondamentale 4

Math4
Fonction de la variable complexe (cours/TD) 3 séances/ semaine VHG = 67,5 heures
Chapitre 5 : Fonctions Harmoniques

Phys 4
Mécanique quantique (cours/TD) 3 séances/ semaine VHG = 67,5 heures
II- Le formalisme mathématique de la mécanique quantique : Espace de Hilbert, espaces des fonctions d’onde , espace des états. Notation de Dirac, opérateurs linéaires, opérateurs hermitiques . Equations aux valeurs propres, observables , ECOC. Représentation X et P Produit tensoriel d’espaces et d’opérateurs
IV- Etude quelques exemples de système à une dimension : Seuil, barrière et puits de potentiel . Etats stationnaires, quantification, états liés. Coefficients de réflexion et de transmission, effet tunnel.
V- L’oscillateur harmonique : Méthodes de résolution à l’aide des opérateurs de création et d’annihilation. Cas stationnaire à une dimension : valeurs propres de l’énergie et fonctions propres
VI- Les moments cinétiques : Le moment cinétique J, relations de commutations.
Le moment cinétique orbital L, harmoniques sphériques. Le moment cinétique de spin S, expérience de Stern et Gerlach-moment de spin.
VII- Méthodes d’approximations : Méthode variationnelle. Théorie des perturbations indépendantes du temps

Chim 4

Chimie inorganique (cours/TD) 3 séances/semaine VHG = 67,5 heures

Unité Méthodologie 4

Electronique générale (18h cours + 17h TD + 10h TP) 2 séances/semaine VHG = 45 heures

I - RESEAUX ELECTRIQUES 5 semaines

Courant continu : définition, générateurs de tension et de courant (idéal, réel), relations tension-courant (R, L, C), lois de kirchhoff. Méthodes d’analyse des réseaux linéaires : méthode des mailles et des neuds, application à la notation matricielle. Théorèmes fondamentaux (superposition, théorèmes de Thévenin et Norton, réciprocité), équivalence entre thévenin et Norton.

Régime variable : circuits et signaux en régime variable, application du calcul variationnel (transformée de Laplace, exemple : impédance symbolique et circuits soumis à un signal échelon ou à un signal impulsion).

Régime sinusoïdal : représentations des signaux, notation complexe, impédance électriques, adaptation d’un générateur sinusoïdal. Méthodes d’analyse des réseaux en régime sinusoïdal et théorèmes fondamentaux, application aux circuits RC, RL.

Etudes des circuits résonnants série et parallèle, régime forcé : réponses en fréquence, coefficients de qualité, bande passante, sélectivité, unités logarithmiques.

II- QUADRIPOLES PASSIFS 5 semaines
Représentation d’un réseau passif par un quadripôle, les matrices d’un quadripôle, associations de quadripôles. Grandeurs caractérisant le comportement d’un quadripôle dans un montage (impédance d’entrée et de sortie, gain en tension et en courant), application à l’adaptation.

III- DIODES

Notion élémentaires sur la physique des semi-conducteurs (jonction, bandes d’énergie, conduction dans les semi-conducteurs intrinsèques et extrinsèques).

Constitution et fonctionnement d’une diode, polarisation, caractéristiques courant-tension, droite de charge, régime statique et variable.

Les circuits à diodes : redressement simple et double alternances, application à la stabilisation de tension par la diode Zener, écrétage, pompes à diodes.

TP ELECTRONIQUE

1. Quadripôles résistifs.
3. Filtres actifs.
4. Circuits en régimes libre (intégrateur, dérivateur).
5. Théorèmes fondamentaux (superposition, Thevenin, Norton).
6. Diode I (caractéristiques des diodes, redressement et filtrage).
7. Diodes II (Diode Zeener, Stabilisation par diode Zeener)

Unité Culture générale 4

Langue Anglais (1 cours/semaine)

Unité Fondamentale 4 (option 1)

Chimie 5

Chimie organique descriptive (cours/TD/TP) 2 séances / semaine VHG = 45heures

Dans ce module, c’est l’approche fonctionnelle qui a été choisie. Les notions essentielles de la Chimie Organique ; stéréochimie, analyse conformationnelle, réactivité, intermédiaires et mécanismes réactionnels, grandes réactions de synthèse seront introduites et/ou approfondies tout au long de ce cours.

Chimie organique descriptive, les grandes fonctions de la chimie organique. Les alcanes, les alcènes, les alcynes, la réaction d’addition. L'aromaticité, le benzène, les substitutions électrophiles. Les dérivés halogénés, la substitution nucléophile, l'élimination. Les organométalliques, les alcools, les phénols, les éthers oxydes, les amines, la fonction carbonyle, les acides carboxyliques et les fonctions dérivées.

2 Ces programmes ont été élaborés initialement pour un volume horaire de 67,5 heures, ils doivent être aménagés pour un volume horaire de 22,5 heures (initiation).
Travaux pratiques : apprentissage des méthodes de synthèse et de purification des composés organiques.

Chim 6

Chimie des solutions (cours/TD/TP) 2 séances / semaine VHG = 45heures
Equilibres en solution : 1. Equilibre homogène et équilibre hétérogène. 2. La constante d’équilibre. 3. Les facteurs d’équilibre. Principe de Le CHATELIER.

Unité Fondamentale 4³ (option 2)

Physique 5

Mécanique des fluides (cours/TD/TP) 2 séances / semaine VHG = 45heures
CH1 Généralités
 2. Définition du milieu continu, caractéristique du milieu fluide, notion de particule fluide
 3. Forces de volume et force des surfaces appliqués à un domaine fluide.
 4. Fluide parfait, fluide visqueux.
CH2 Statique des fluides
 1. Equations générales de la statique des fluides.
 2. Cas particulier de l’hydrostatique.
 3. Forces de poussée d’Archimède.
 4. Statique des gaz.
CH 3 Cinématique des fluides
 1 Repérage d’une particule fluide
 2 Point de vue de la grange, point de vue d’Euler, dérivée particulière.
 3 Lignes de courant, ligne d’émission, trajectoire
 4 Tenseur des déformations, lois de comportement. Cas d’un fluide newtonien.
 5.écoulements rotationnels, irrotationnels
 6.écoulements plans à potentiel des vitesses : exemple classique.
CH 4 Dynamique des fluides parfaits
 1. Théorème généraux
 2. Equations fondamentales pour un fluide parfait.
 3. Equation de bernoulli : applications.
 4. Etude des débimètres (venture, diaplnagnie, tube de pilot…)
CH 5 Dynamique des fluides visqueux
 1. Equation intégrale du mouvement
 2. Equation locale équation de navier stockes applications
 3. Résolution de quelques problèmes classiques instationnaires.

³ Ces programmes ont été élaborés initialement pour un volume horaire de 67,5 heures, ils doivent être aménagés pour un volume horaire de 22,5 heures (initiation).
CH 6. Introduction à la dynamique des gaz
 1. Equation de barréde Si venant
 2. Ecoulement dans un convergent-divergent.
 3. Ecoulement supersonique ,ondes de chocs.

Physique 6
Electromagétisme *(cours/TD/TP)* 2 séances / semaine VHG = 45heures

1) **Ondes électromagnétiques**
 - Equation de Maxwell dans le vide.
 - Equation de Maxwell dans un milieu matériel.
 - Ondes électromagnétiques planes (O.E.P).
 - Propagation des O.E.P dans le vide.
 - Propagation des O.E.P dans un diélectrique
 - Réflexion des O.E.P sur un milieu métallique
 - Production des O.E.P.
 - Interaction des O.E. avec un milieu matériel (Absorption)

*
Intitulé de la Licence : Chimie Organique pharmaceutique

Semestre : 5

Enseignant responsable de l'UE:
Matière : Méthodes spectroscopiques et chromatographiques CO8
Enseignant responsable de la matière: AOUF Nour-Eddine
Enseignant intervenant : DJILANI Salah

Objectifs de l’enseignement: Cet enseignement vise la compréhension des phénomènes spectroscopiques. L’élucidation des structures moléculaires et des éléments dans des échantillons variés constituent les applications de ces méthodes spectroscopiques. Cet enseignement trouve de nombreuses applications dans les domaines tel que (l’environnement, la synthèse organique, etc ..).

Connaissances préalables recommandées: des connaissances sur la chimie générale (structure de la matière, niveaux d'énergie atomique).

Contenu de la matière :
-Introduction aux méthodes spectroscopiques, Ultra Violet, Infrarouge, Résonance magnétique nucléaire ¹H, ¹³C, spectroscopie de masse, diffraction X. Absorption atomique, Photométrie de flamme.
- Méthodes chromatographiques d'analyse.

Mode d'évaluation: Contrôle continu

Références :
1- Manfred Hess. Méthodes spectroscopiques pour la chimie Organique (Ed. Masson)
2- Silverstein H. Identification spectroscopiques de composés Organiques DeBoeck Université
3- Francis Rouessac. : Analyse chimique, Méthode techniques instrumentales modernes (Ed. Dunod)
Intitulé de la Licence : Chimie pharmaceutique
Semestre : 5
Enseignant responsable de l’UE :
Matière : Pharmacie Galénique CP2

Enseignant responsable de la matière: Dr. DJEBBAR Mohamed Maître Assistant Hospitalo-universitaire en Pharmacie Galénique.

Objectifs de l’enseignement
A l’issu de sa formation, l’étudiant doit :

- acquérir des éléments du vocabulaire pharmaceutique
- comprendre ce qu’est un médicament en définissant les différentes étapes de son développement, de sa préparation à sa commercialisation et à son utilisation.
- connaître les excipients entrant dans la composition des formes pharmaceutiques, les opérations nécessaires à leur utilisation ainsi que le principe de leur contrôle.

Connaissances préalables recommandées
Les candidats doivent avoir des notions de base en chimie organique et chimie analytique.

Contenu de la matière :
1. Introduction à la Pharmacie Galénique
2. Eau à usage pharmaceutique
3. Excipients
4. Matériaux de conditionnement
5. Opérations pharmaceutiques
6. Voies d’administration des médicaments
7. Devenir des médicaments dans l’organisme
8. Développement analytique et galénique d’un médicament
9. Formes orales solides : Comprimés et gélules
10. Préparations injectables
13. Cyclodextrines

Mode d’évaluation :
Le contrôle des connaissances acquises est assuré par :
- Des travaux dirigés : remise et la présentation orale d’un exposé.
- Deux épreuves théoriques.

Références
Intitulé de la Licence : Chimie Organique pharmaceutique

Semestre : 5

Enseignant responsable de l'UE:
Module : COA1 Chimie Analytique
Enseignant responsable de la matière: Dr. BERREZAG Kamel
Enseignant intervenant: Dr. DJILANI Salah

Objectifs de l’enseignement : Maîtriser les concepts fondamentaux d’équilibre chimique, et les méthodes spectrales.

Connaissances préalables recommandées: des Connaissances suffisantes de la chimie générale, notions de chimie des solutions et structure de la matière.

Contenu de la matière:

2- Méthodes spectrales.
– Rappels sur les radiations lumineuses (notions quantitatives, énergie d'un photon, intensité lumineuses). – Interaction rayonnement matière (transitions spectrales, aspect quantitatif de l’absorption d’un rayonnement, loi Beer Lambert.) -Différentes sortes de spectres, continus ou discontinus, spectres de raies, spectres de bandes, spectres d'émission, spectres d'absorption–Spectrométrie par absorption atomique (Principe, appareillage, source lumineuse, différents types de lampes, mesure de l'intensité lumineuse non absorbée, applications. – Spectrométrie par émission atomique (Etudes des spectres atomiques, règles de sélection, multiplicité des raies, raies de résonance, ionisation.

Mode d'évaluation: contrôle continu et examen final

Références
1-(Livres et polycopiés, sites internet, etc)
2- Francis Rouessac: Analyse chimique, Méthode techniques instrumentales modernes (Ed. Dunod)
Intitulé de la Licence : Chimie pharmaceutique
semestre : 5

Enseignant responsable de l'UE:
Module : Initiation à la Chimie Pharmaceutique CP1
Enseignant responsable de la matière: Pr. LIACHA Messaoud

Objectifs de l'enseignement : Familiariser les chimistes organiciens avec le langage et la démarche utilisés dans la recherche de molécules biologiquement actives.

Connaissances préalables recommandées: Des connaissances, à la fois sur les principales classes d'hétérocycles, et sur quelques autres structures, plus particulièrement impliquées en biologie et qui constituent, en outre, pour certaines d'entre elles, les bases structurales de nombreux médicaments.

Contenu de la matière : Etape de la découverte médicamenteuse, Aspects généraux, Stratégies dans la recherche de nouveaux leads (molécules candidates), Les cibles des médicaments, Mode de fixation des molécules, Découverte et mise au point de Médicaments, Explorations des relations structure/activité, Quelques médicaments importants – procédés de synthèse, Inhibition d'Enzymes, Stéréoisomérie et médicaments

Mode d'évaluation: Examen continu

Références (Livres et polycopiés, sites internet, etc):

Intitulé de la Licence : Chimie Organique pharmaceutique

Semestre : 5

Enseignant responsable de l'UE: Pr. REGAINIA Zine
Module : réactivité chimique et mécanisme réactionnel CO7 (Chim.7)
Enseignant responsable de la matière: Pr. REGAINIA Zine
Enseignant Intervenant : Pr. DJEGHABA Zineddine

Objectifs de l'enseignement: Ce cours s'inscrit dans la continuité des enseignements de chimie organique des deux premières années. L’objectif est de présenter, dans un premier temps, les différents paramètres énergétiques des réactions chimiques avant d’aborder les grands principes réactionnels en chimie organique.

Connaissances préalables recommandées: des connaissances sur la chimie organique descriptive

Contenu de la matière: paramètres énergétiques des réactions chimiques avant d’aborder les grands principes réactionnels en chimie organique. La dernière partie étant consacrée à la description et l'interprétation mécanistique des réactions et de la description des principaux outils en synthèse organique.
1- Effets électroniques. 2- Paramètres énergétiques d'une réaction. 3-État de transition et intermédiaires réactionnels. 4- Approximation des orbitales moléculaires : Introduction aux mécanismes réactionnels. 5- Les réactions ioniques. 6- Les réactions d'éliminations. 7- Additions électrophiles sur double liaison C=C. 8- Oxydation. 9- Le carbonyle en synthèse organique. 10- Réactivité nucléophile des systèmes carbonylés énolisables. 11- Enamines, imines et miniums. 11- Carbonyles conjugués

Mode d’évaluation: contrôle Continu

Références (Livres et polycopiés, sites internet, etc):
1-Traité de Chimie Organique, Vollhardt. Schore
2-Chimie Organique Méthodes, Méthodes et modèles Pière Vogel.
Intitulé de la Licence : Chimie Organique Pharmaceutique

Semestre : 5
Enseignant responsable de l'UE:
Module : TP Synthèse Organique I
Enseignant responsable de la matière: Dr. BERREDJEM Malika

Objectifs de l'enseignement : Initiation aux techniques fondamentales utilisées en chimie organique et à la recherche de données bibliographiques. Mise en pratique des notions théoriques abordées au cours de Chimie Organique.. Familiariser l'étudiant avec les propriétés et les principales caractéristiques structurales des molécules organiques.

Connaissances préalables recommandées: des connaissances sur la chimie Organique théorique.

Contenu de la matière:
La compréhension et la réalisation d'un mode opératoire, (b) l'appréciation du risque, (c) les techniques d'extraction et de purification (cristallisation et distillation), (d) l'identification et la pureté des composés synthétisés. Manipulations illustrant quelques réactions importantes de la chimie organique: Cannizzaro, Friedel-Crafts, transposition de Beckmann, organomagnésien. Recristallisation, entraînement à la vapeur.
N°1- Réaction de Friedel et Crafts : Synthèse de l'acide O-(p-toluoyl)-benzoïque.
N°2- Condensation de Clasen Schmidt : Synthèse de la dibenzylacétone
N°3- Chloration de l'acide acétique : Synthèse du chlorure d'acétylène
N°4- Réaction de l'aniline sur le chlorure d'acétylène : Synthèse d'une amide
N°5- Réaction de Cannizzaro : Préparation de l'acide benzoïque et de l'alcool benzylique
N°6- Réaction de Nitrosation : Préparation de la N-niroso-diphénylamine.

Mode d'évaluation: Soutenance

Références
Intitulé de la Licence: Chimie Organique pharmaceutique

Semestre : 5

Enseignant responsable de l'UE:
Module : Biochimie et physiologie cellulaire
Enseignant responsable de la matière: Enseignant du département de biologie

Objectifs de l’enseignement: Cet enseignement à pour objectif d’initier aux étudiants Les éléments de biologie cellulaire

Connaissances préalables recommandées :

Contenu de la matière: 1- Eléments de biologie cellulaire. Organisation cellulaire, les membranes, les organites cellulaires - les échanges (transports).
2/ Bioénergétique - équilibre réactionnel - catalyse enzymatique
3/Métabolisme, Généralités, glycolyse, glycogénèse, cycle de Krebs, acides gras et lipides (anabolisme et catabolisme), Acides Aminés et protéines (le cycle de l'azote).

Mode d’évaluation: Examen
Intitulé de la Licence : Chimie Organique pharmaceutique

Semestre : 5

Enseignant responsable de l'UE:
Module : **Pharmaco-Toxicologie**
Enseignant responsable de la matière: **Pr. Djebbar Houria**

Objectifs de l'enseignement: Cet enseignement a pour objectif d'initier aux étudiants les toxiques médicamenteux et non médicamenteux.

Connaissances préalables recommandées: notions sur les structures des molécules organiques.

Contenu de la matière: les toxiques médicamenteux (notions de pharmaco-toxicologie, définition des toxiques médicamenteux, les benzodiazépines), les toxiques non médicamenteux (les métaux, les insecticides, les herbicides, les hydrocarbures…….).

Mode d'évaluation: Examen
Intitulé de la Licence : Chimie Organique Pharmaceutique

Semestre : 6

Enseignant responsable de l’UE:
Module : TP Synthèse Organique II
Enseignant responsable de la matière: Dr. BERREDJEM Malika

Objectifs de l’enseignement : Apprendre à travailler avec des produits chimiques à risques moyens et dans des conditions expérimentales sophistiquées; bien mener des synthèses à plus d’une étape.

Connaissances préalables recommandées:

Mode d’évaluation: Présentation orale des résultats scientifiques

Références (Livres et polycopiés, sites internet, etc):
Intitulé de la Licence : Chimie organique pharmaceutique

Semestre : 6

Enseignant responsable de l’UE :
Enseignant responsable de la matière: Dr. DJEBBAR Mohamed Maître Assistant
Hospitalo-universitaire en Pharmacie Galénique.

Matière: Analyse et contrôle du médicament. CP5

Objectifs de l’enseignement :

L’objectif de cet enseignement est de :

- préciser les principaux concepts liés au contrôle qualité des médicaments
- développer les bases nécessaires à leur application dans l’industrie pharmaceutique.

Connaissances préalables recommandées

Les étudiants doivent avoir acquis précédemment quelques connaissances de base en chimie analytique et pharmacie Galénique.

Contenu de la matière :

1. Contrôle physico-chimique : méthodes d’analyses des matières premières et produits finis
2. Contrôle pharmaco technique des différentes formes galéniques.
3. contrôle microbiologique : contrôle de la stérilité et de l’environnement
4. Essais de stabilité
5. Validation des méthodes d’analyse
6. Législation et réglementation : Dossier AMM, Système Assurance Qualité, Contrôle Qualité, BPF, BPL.

Références

15. SFSTP PHARMA pratique.
17. Pharmacopée Européenne.
18. Pharmacopée Américaine USP.
Intitulé de la Licence : Chimie Organique Pharmaceutique

Semestre : 6

Enseignant responsable de l'UE: Chimie Pharmaceutique CP3
Enseignant responsable de la matière: Pr. LIACHA Messaoud
Enseignant Intervenant: Dr. BERREDJEM Malika

Objectifs de l'enseignement : Appliquer les connaissances de chimie organique à certaines catégories de molécules importantes pour leurs effets biologiques et faire le lien entre les théories et la pratique portant sur l'action des médicaments.

Connaissances préalables recommandées : Connaissance suffisante de la chimie générale et organique, notions de physiologie.

Contenu de la matière : Compréhension du mécanisme d'action des médicaments et de la relation entre la structure chimique du produit et son activité biologique. Biodisponibilité et biotransformation: solubilité des médicaments, absorption et mouvement à travers les membranes biologiques. Cheminement d'un produit depuis la découverte de son activité jusqu'à sa mise en marché. Aperçu de quelques grandes familles: antibiotiques, antiseptiques…….,

Mode d'évaluation: control continu

Références (Livres et polycopiés, sites internet, etc):
2. A.Lespagnol (1974) : chimie des médicaments ; tome 1
Intitulé de la Licence : Chimie Organique Pharmaceutique

Semestre : 6

Enseignant responsable de l’UE:
Module : Chimie Bioorganique CO11

Enseignant responsable de la matière: Pr. AOUF Nour-Eddine
Enseignant intervenant: Dr. BIDJOU Chahra

Objectifs de l’enseignement: cet enseignement a pour objectif particulier la connaissance des structures des molécules qui constituent le vivant. La synthèse et l’implication des biomolécules dans les nombreuses synthèses qui permettent l’accès à des composés d’intérêt thérapeutique mettront en valeur l’intérêt de cet enseignement.

Connaissances préalables recommandées:
Connaissance en chimie organique (synthèse organique et stéréochimie)

Contenu de la matière :
II. Acides aminés, peptides et protéines. Définition et Etude structurale. Synthèse peptidique. Identifications caractéristiques des peptides. Application ; Molécules biologiquement actives,
VI- substances naturelles
Mode d’évaluation: contrôle continu

Références :
(Livres et polycopiés, sites internet, etc)
Albert Dubert : introduction à la Biochimie. édition : Ediscience
Intitulé de la Licence : Chimie Organique Pharmaceutique

Semestre : 6

Enseignant responsable de l'UE:
Module : Catalyse stereoselective CO10
Enseignant responsable de la matière: Mme ZOUIOUECHE LOUISA
Enseignant intervenant: BOUZEMI Nassima

Objectifs de l’enseignement:
Cet enseignement a pour objectif de fournir une vision d'ensemble de la catalyse moléculaire qui est un pilier de la chimie verte. Il décrit et compare les processus en catalyse homogène, hétérogène et enzymatique en montrant l'importance de la catalyse au niveau industriel et ses applications en chimie fine et pour la synthèse des médicaments

Connaissances préalables recommandées : aucune

Principaux thèmes à aborder :
Généralités sur la catalyse. Enjeux dans un cadre de chimie verte. Catalyse homogène, hétérogène (hétérogénéisation de la catalyse homogène), biocatalyse. Description et comparaison des processus élémentaires dans des différents types de catalyse.

1. Partie catalyse homogène

2. Partie catalyse hétérogène
Principes de base de la catalyse hétérogène. Illustrations dans divers domaines de la pétrochimie et de la chimie de synthèse inorganique de base (ammoniac, acide sulfurique).

Mode d'évaluation:
Contrôle continu+Examen final.
Intitulé de la Licence : Chimie Organique pharmaceutique

Semestre : 5
Enseignant responsable de l'UE:
Module : Chimie Organique II (les enzymes, Chimie radicale)
Enseignant responsable de la matière: Pr. DJEGHABA Zeineddine
Enseignant intervenant: Pr. FERKOUS Foued

Objectifs de l’enseignement : Donner les bases nécessaires en enzymologie aux étudiants abordant la chimie pharmaceutique.

Connaissances préalables recommandées : cinétique chimique

Contenu de la matière:
1- Enzymes:

2- Chimie radicale : Radicaux carbonés, Applications des réactions radicalaires à la synthèse Organique.

Mode d'évaluation: Contrôle continu et examen final.

Références :
J. Pelmont, Enzymes, Presses Universitaires de Grenoble
J.-C. Chottard, J.-C. Depezay et J.-P. Leroux, Chimie fondamentale, III. Réactions organiques et enzymatiques, Hermann, Paris
Intitulé de la licence : Chimie Organique Pharmaceutique.

Semestre : 6
Enseignant responsable de l'UE :

Module : Initiation à la modélisation moléculaire.

Enseignant responsable de la matière : Pr DJEROUROU Abdelhafid.

Objectifs de l'enseignement : Permettre aux chimistes organiciens de se familiariser avec la modélisations des molécules chimiques, de manipuler des structures de les simuler et de comparer leur stabilité de les analyser à travers des indices spécifiques et des propriétés chimiques avec l'outil informatique.

Connaissances préalables : des connaissances sur certaines notions de mécanique classique et quantique de base, de spectroscopie moléculaire et une connaissance de l'outil informatique est souhaitable.

Contenu de la matière :

Cours
- La Modélisation au sens classique. Rappels sur les approximations usuelles (Born et Oppenheimer, approximation orbitale, LCAO, ...). Introduction rapide à l'analyse de population (Mulliken principalement) Introduction au calcul des principales propriétés moléculaires. Présentation des méthodes quantiques et empiriques ; analyse conformationnelle ; dynamique moléculaire ; applications en chimie organique.

Travaux pratiques :
- Quelques exemples de simulation : Exemples de modélisation moléculaire à l'aide de logiciels de modélisation moléculaire.

Références :
Intitulé de la Licence : Chimie pharmaceutique

Semestre : 6

Enseignant responsable de l'UE :

Enseignant responsable de la matière: AIT KAKI Samira

Objectifs de l’enseignement : Au terme de cet apprentissage, l’apprenant doit connaître les principales familles de médicaments à savoir l'historique de leur découverte, les nomenclatures, structures générales, relations structure-activité, schémas de synthèses (des chefs de fil) et propriétés pharmacologiques.

Connaissances préalables recommandées: La chimie organique est indispensable à la compréhension des mécanismes de synthèse des médicaments. L’étudiant doit aussi avoir des notions de base de pharmacologie.

Contenu de la matière :
- Enseignements théoriques- Définitions et objectifs du module.

Médicament : de la conception à la commercialisation (2h)
Règles de relation structure activité (2h)
Médicaments du système nerveux central: (6h) (Barbituriques, Hydantoines et dérivés, Carbamates, Phénothiazines, Benzodiazépines , Antidépresseurs dérivés des azépines)
Les anti-inflammatoires non stéroïdiens (2h)
Les antihistaminiques (2h)
Les antidiabétiques oraux (2h)
Les vitamines (dérivées du furanne, du pyrole et de la pyridine) (2h)
Antihypertenseurs (4h)
Les antibiotiques (6h): (Bêta lactamines, Sulfamides, Chloramphénicol, Aminosides, Macrolides, Tétracyclines).

Mode d’évaluation : QCM + exercices

Références
5. A.Lespagnol (1974) : chimie des médicaments ; tome 2
7. www.em-consulte.com
Intitulé de la licence : Chimie Organique Pharmaceutique

Semestre : 5

Enseignant responsable de l'UE:
Module : COA2 Cinétique et catalyse
Enseignant responsable de la matière:
Enseignant intervenant:

Objectifs de l'enseignement : Cet enseignement a pour objectif de fournir une vision d'ensemble du contrôle cinétique des réactions organiques ainsi que la catalyse homogène et hétérogène.

Connaissances préalables recommandées:

Contenu de la matière:

11ère partie : Cinétique Homogène
Généralités et définitions
II. Cinétique formelle.
2-Réactions composées : réactions parallèles ou compétitives. Réactions successives.
3- Réactions complexes : réactions à séquences ouverts. Réactions en chaîne.

2ème partie : Introduction à la cinétique hétérogène

Mode d'évaluation: contrôle continu et examen final

Références (Livres et polycopiés, sites internet, etc):
V- Accords / Conventions
LETTRE D’INTENTION TYPE

(En cas de licence coparrainée par un autre établissement universitaire)

(Papier officiel à l’entête de l’établissement universitaire concerné)

LETTRE D’INTENTION TYPE

(En cas de licence en collaboration avec une entreprise du secteur utilisateur)

(Papier officiel à l’entête de l’entreprise)

OBJET : Approbation du projet de lancement d’une formation de Licence intitulée :

Chimie Pharmaceutique

Dispensée à :

Par la présente, l’entreprise SAIDAL déclare sa volonté de manifester son accompagnement à cette formation en qualité d’utilisateur potentiel du produit.

A cet effet, nous confirmons notre adhésion à ce projet et notre rôle consistera à :

- Donner notre point de vue dans l’élaboration et à la mise à jour des programmes d’enseignement,
- Participer à des séminaires organisés à cet effet,
- Participer aux jurys de soutenance,
- Faciliter autant que possible l’accueil de stagiaires soit dans le cadre de mémoires de fin d’études, soit dans le cadre de projets tuteurés.

Les moyens nécessaires à l’exécution des tâches qui nous incombent pour la réalisation de ces objectifs seront mis en œuvre sur le plan matériel et humain.

Monsieur (ou Madame)* …………………….. est désigné(e) comme coordonnateur externe de ce projet.

SIGNATURE de la personne légalement autorisée :

FONCTION :
LETTRE D’INTENTION TYPE

(En cas de licence en collaboration avec une entreprise du secteur utilisateur)

(Papier officiel à l’entête de l’entreprise)

OBJET : Approbation du projet de lancement d’une formation de Licence intitulée :

Chimie Pharmacéutique

Dispensée à :

Par la présente, l’entreprise BIOCARE déclare sa volonté de manifester son accompagnement à cette formation en qualité d’utilisateur potentiel du produit.

A cet effet, nous confirmons notre adhésion à ce projet et notre rôle consistera à :

- Donner notre point de vue dans l’élaboration et à la mise à jour des programmes d’enseignement,
- Participer à des séminaires organisés à cet effet,
- Participer aux jurys de soutenance,
- Faciliter autant que possible l’accueil de stagiaires soit dans le cadre de mémoires de fin d’études, soit dans le cadre de projets tuteurés.

Les moyens nécessaires à l’exécution des tâches qui nous incombent pour la réalisation de ces objectifs seront mis en œuvre sur le plan matériel et humain.

Monsieur (ou Madame)*…………………… est désigné(e) comme coordinateur externe de ce projet.

SIGNATURE de la personne légalement autorisée :

FONCTION :

Date :

CACHET OFFICIEL ou SCEAU DE L’ENTREPRISE
VI – Curriculum Vitae des Coordonateurs
CURRICULUM VITAE

Nom : AHMED-CHAOUCH
Prénom : Med Ridha
Date et lieu de naissance : 07 / 05 / 1955 à Tébessa
Nationalité : Algérienne
Situation vis-à-vis du service national : Accompli (84/86)
Adresse personnelle : Les Santons II Bloc I - Annaba
Situation de famille : Marié
Nombre d’enfants : 02

Diplôme de graduation :
- Licence de Chimie obtenue à l’Université de Annaba
- Ingéniorat d’Etat en Chimie obtenu à l’Université de Annaba

Diplôme de Post-Graduation
- Magister en chimie inorganique obtenu en 1996 à l’Université de Annaba

Recrutement à l’Université de Annaba :
- Recruté le 28/02/1982 en qualité d’enseignant (Assistant)

Grade : Maître-assistant Chargé de Cours

Activités pédagogiques :
- Chargé de travaux dirigés :
 Chimie analytique (C020) ; chimie minérale (C017) ; Pharma 101 ;
 Tronc commun Sciences de la nature ; tronc commun technologie 2ème année

- Chargé de travaux pratiques :
 Chimie analytique(C020) ; chimie minérale (C017) ; Sec-120 ; Sec-130 ;
 Tec-723 ; Tec-724
LMD : 2ème année Sciences de la matière : Unité d’Enseignement Méthodologique
 - Réalisation de brochures de travaux pratiques de chimie (C020) avec Le Pr. SAMAR
 Med ElHadi, (Sec-130) en collaboration avec Le Pr. DJEGHABA Zine Eddine

Activités scientifiques :
- Membre du comité d’organisation du 3ème Congrès de la S.A.C (Annaba, Mai 1995)
- Communication au 4ème Congrès de la S.A.C (Tlemcen, Mai 1997)
Etude de la formation des complexes des métaux lourds avec les
 Hétéropolyanions et la 4-pyridyl-2azorésorcinol.Mise au point de leur séparation
 Par HPLC.
 (M.R.AHMED-CHAOUCH,N.REBBANI et M.BOUMAHREZ)
- Membre du comité d’organisation du 6ème Symposium National de Chimie Organique
 Industrielle et Pharmaceutique (Annaba, Décembre 2006)
Activités administratives :

- Responsable des équipements, plus taches administratives (1982-1987)
- Responsable des stages pratiques depuis 1988
- Chef de Département de Chimie 2001-2008
Née le 22 Septembre 1957 à ANNABA, ALGERIE. Mariée. 3 enfants.

Adresse Professionnelle :
Institut de chimie
Université de Annaba, BP 12, 23000 Annaba
L.C.O.A. Groupe de Synthèse Asymétrique et Biocatalyse
Tel : (213)-(0)-38-87 65 67 Fax : (213)-(0)-38-86 85 10
Mobile : 07 74 03 70 59
E-mail : lzouioueche@yahoo.fr

Diplômes :
Baccalauréat Sciences expérimentales, Lycée Saint Augustin Annaba (1975)
D.E.S. Chimie. Université de Annaba. (1979)

Carrière Professionnelle :
Maître assistante. Université de Annaba (1985-1988)
Chargé de cours. Université de Annaba (1988-1990)
Maître de Conférences. Université de Annaba (1990-1996)
Professeur. Université de Annaba (depuis 1997)

Enseignement graduation:
LMD : Coordonnatrice du domaine Sciences de la matière.
Responsable du Master « chimie organique fine »
Post- graduation et recherche:

Directions de thèses :
Magisters : 07 soutenus
_ BIDJOU Chahra. Soutenu le 18 avril 1995 à l’université de Annaba.
_ BOUZEMI Nissima. Soutenu le 5 Octobre 1997 à l’université de Annaba.
_ MELAIS Nedjma. Soutenu le 28 octobre 2006. Université de Annaba.

Doctorats d’état : 02 soutenus
_ BIDJOU-HAIOUR Chahra. Soutenu le 2 mars 2005 à l’université de Annaba.
_ BOUZEMI Nassima. Soutenu le 8 mai 2006 à l’université de Annaba.

Doctorats: 01 soutenu
_ ZEROR Saoussen. Soutenu le15 juin 2007 à l’université de Annaba.
Direction de thèses en préparation :
05 thèses de Doctorat :
 _ DEBECHE Hanane. Maître assistante. Centre universitaire d’El-Oued
 _ MERABET Mounia Doctorante. Université de Annaba.
 _ BOUSLAMA Slim. Maître assistant. Université de Annaba.
 _ MELAIS Nedjma. Doctorante. Université de Annaba.
 _ HOUIENE Zahia. Doctorante. Université de Annaba.
01 Magister
 _ BOUKACHABIA Mourad. Etudiant PG.

Travaux scientifiques

15 publications internationales
50 communications internationales et nationales
CURRICULUM

Nom et Prénom : BERREDJEM Malika
Date et lieu de naissance: 06/07/1970 Annaba
Adresse Personnelle: Cité du 11/12/60 BtE Bloc 2 Annaba
Poste Occupé: Enseignante
Grade: Maître de conférences
Lieu d’exercice: Université de Annaba
Adresse professionnel: Université Badji-Mokhtar BP 12 Annaba
Spécialité: Chimie Organique

FORMATION

<table>
<thead>
<tr>
<th>Année</th>
<th>Établissement</th>
<th>Titre Qualifiant</th>
</tr>
</thead>
<tbody>
<tr>
<td>1989</td>
<td>Lycée technique</td>
<td>Baccalauréat en chimie industriel</td>
</tr>
<tr>
<td>1994-1995</td>
<td>Université d'Annaba</td>
<td>DES en chimie Générale</td>
</tr>
<tr>
<td>1995-1996</td>
<td>Université d'Annaba</td>
<td>DEA en chimie Organique Appliquée</td>
</tr>
<tr>
<td>1997-1998</td>
<td>Université d'Annaba</td>
<td>Magister en Chimie Bioorganique</td>
</tr>
<tr>
<td>2003-2004</td>
<td>Université d'Annaba</td>
<td>Doctorat d’Etat en Chimie Bioorganique</td>
</tr>
</tbody>
</table>

EXPERIENCE PROFESSIONNELLE

<table>
<thead>
<tr>
<th>Année</th>
<th>Établissement</th>
<th>Titre Qualifiant</th>
</tr>
</thead>
<tbody>
<tr>
<td>1994-1996</td>
<td>Université d'Annaba</td>
<td>Assistante associée</td>
</tr>
<tr>
<td>1997-2004</td>
<td>Université d'Annaba</td>
<td>Maître assistante</td>
</tr>
<tr>
<td>2004-2009</td>
<td>Université d'Annaba</td>
<td>Maître de conférences</td>
</tr>
</tbody>
</table>
TRAVAUX SCIENTIFIQUES

13 publications internationales
17 communications internationales
17 communications nationales

- Encadrement de mémoires et thèses après le grade de maître de conférences

Mémoire d'ingénieurs
Gouasmi Imène et Boufas Wahida
Thème : Synthèse des N-phosphonoethyl-oxazolidin-2-ones chiraux
Année : 2005-2006

Bouchareb Fouzia
Thème : Synthèse et étude structurale de phényle phosphorodiamidates dérivés
da amines et d'ami noesters
Année : 2006-2007

Mémoires de Magister
2 Magisters soutenus

Allaoui Assia
Thème : Synthèse des Bis-oxazolidinones à partir des carboxylsulfamides.
Evaluation Toxicologique.

Trad Nadia
Thème : Synthèse de nouvelles familles d’hétérocycles azotés contenant le motif phosphoryles
Evaluation biologique.
Année : 2006/2007

1 Magister en cours
Bouchareb Fouzia
Thème : Synthèse des Diazaphospholidin-2-one Protégés. Evaluation Biologique

Thèses de doctorat (4 en cours)
1-Bouasla Radia
Thème : Synthèse et Activité Antibactérienne d’une nouvelle classe d’hétérocycles contenant
un groupement sulfonyle

2-Guezane Lakoud Samia
Thème : synthèse des sulfahydantoines contenant s le motif phosphonates. Evaluation biologique

3-Hessainia Sihem
Thème : Synthèse des dia zaphospholidines chiraux dérivés

4-Bougueloum Chafika
Thème : synthèse d’hétérocycles azotés par voie catalytique d’aminooesters.
Application en synthèse organométallique

Activités Pédagogiques
1-Cours de thermodynamique destinés aux étudiants de tronc commun sciences et techniques
2004-2006
2-Cours de structure de la matière destinés aux étudiant de tronc commun LMD. 2006-2008
3-Cours de thermodynamique destiné aux étudiants de tronc commun LMD. 2006-2008
4- Cours sur la chimie des hétérocycles, destinés aux étudiants de magister de l’Université d’Annaba. 2007-2008.

5- Cours sur la synthèse organique et fonctionnalisation destinés aux étudiants de magister de l’Université d’Annaba. 2007-2008.

6- Cours de spectroscopie (résonance magnétique nucléaire, infrarouge, spectrométrie de masse) destinés aux étudiants de premier cycle ingénieur 4ème année de l’Université d’Annaba. 2009-2010

7- Cours sur les biomolécules, (molécules d’intérêt biologique) destinés aux étudiant de Master II de l’Université d’Annaba. 2009-2010

- Activité Scientifique
 - Chef de Projet CNEPRU (2007-2009)
 - Responsable de la post-graduation de chimie Organique et Bioorganique 2007/2008
 - Post-doctorant à l'Université paris 13 (2008-2009)
VII - Avis et Visas des organes Administratifs et Consultatifs

Intitulé de la Licence :

<table>
<thead>
<tr>
<th>Comité Scientifique de département</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avis et visa du Comité Scientifique :</td>
</tr>
<tr>
<td>Date :</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Conseil Scientifique de la Faculté (ou de l’institut)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avis et visa du Conseil Scientifique :</td>
</tr>
<tr>
<td>Date :</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Doyen de la faculté (ou Directeur d’institut)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avis et visa du Doyen ou du Directeur :</td>
</tr>
<tr>
<td>Date :</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Conseil Scientifique de l’Université (ou du Centre Universitaire)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avis et visa du Conseil Scientifique :</td>
</tr>
<tr>
<td>Date :</td>
</tr>
</tbody>
</table>
VIII - Visa de la Conférence Régionale
(Uniquement à renseigner dans la version finale de l’offre de formation)